Amelioration of ischemia-reperfusion injury with cyclic peptide blockade of ICAM-1.

نویسندگان

  • Shakil H Merchant
  • Debbie M Gurule
  • Richard S Larson
چکیده

Neutrophils are pivotal in the pathogenesis of ischemia-reperfusion (I/R) injury leading to muscle damage. Firm adhesion of neutrophils to the endothelium is initiated by an interaction between intercellular adhesion molecular-1 (ICAM-1) on the endothelium and beta(2)-integrins on neutrophils. Inhibition of ICAM-1-dependent binding using monoclonal antibodies has been shown to be efficacious in ameliorating I/R injury by preventing the influx of neutrophils into the ischemic tissue. We recently described a cyclic peptide that is a potent and selective inhibitor of ICAM-1 (IP25) in vitro. In this study, we tested the hypothesis that IP25-mediated blockade of ICAM-1 would inhibit neutrophil influx during reperfusion of ischemic tissue and consequently attenuate muscle injury in a tourniquet hindlimb murine model of I/R injury. Varying amounts of peptide drug were injected at the beginning of the reperfusion period. The neutrophil influx and size of infarction at the end of 2 h of reperfusion were compared with those in untreated control mice and contralateral nonischemic limbs. Mice receiving IP25 immediately before reperfusion showed a 56% reduction in neutrophil infiltration in the ischemic muscle, accompanied by a 40% reduction in the infarct size. No effect on I/R injury was seen if IP25 administration was delayed for 60 min after reperfusion. We conclude that IP25 effectively inhibits ICAM-1-mediated adhesion of neutrophils to the endothelium in mice leading to a protective effect and suggests that synthetic peptide antagonists have a potential role as therapeutic tools.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats

Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor b...

متن کامل

The role of hormones in renal disease and ischemia-reperfusion injury

The patients with renal diseases, especially end-stage renal disease (ESRD), are at high risk of developing cardiovascular disturbances. Some hormones such as brain natriuretic peptide appear to be important serum biomarkers in predicting cardiac death in ESRD patients. Renal diseases cause inflammation, anemia, uremic toxins, fluid overload, and electrolyte disturbance. Kidney transplantation ...

متن کامل

Amelioration of rat renal ischemia/reperfusion injury by L-Nil

Introduction: Ischemia/reperfusion (IR) injury involves a complex interrelated sequence of events. High levels of nitric oxide (NO) are generated with inducible form of nitric oxide synthase (iNOS) leading to the renal IR injury and glutathione (GSH) depletion. The present study was designed to investigate the effect of L-Nil (N6- (1-Iminoethyl)-L- lysine.hydrochloride), a selective inhibito...

متن کامل

In vivo evaluation of retinal injury after transient ischemia in hypertensive rats.

A number of studies have suggested that hypertension affects the pathogenesis of inflammatory reactions in various organs. The objective of this study was to evaluate the effects of hypertension on leukocyte-endothelial interactions after transient retinal ischemia. Transient retinal ischemia was induced for 60 minutes in spontaneously hypertensive rats (SHR) and in age-matched normotensive Wis...

متن کامل

Impact of epoxyeicosatrienoic acids in lung ischemia-reperfusion injury.

OBJECTIVE Epoxyeicosatrienoic acids (EETs) are protective in both myocardial and brain ischemia, variously attributed to activation of K(ATP) channels or blockade of adhesion molecule upregulation. In this study, we tested whether EETs would be protective in lung ischemia-reperfusion injury. METHODS The filtration coefficient (K(f)), a measure of endothelial permeability, and expression of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 284 4  شماره 

صفحات  -

تاریخ انتشار 2003